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Abstract Energy compaction filters have attracted considerable attention due in part, to the fact that they 

are the building blocks of optimal orthonormal (paraunitary) filter banks. In this paper we introduce some new 

design techniques for optimum M-channel FIR compaction filters for a given input power spectrum. Some 

properties of the optimum FIR compaction filters and the corresponding maximum compaction gains are also 

derived. For the design part, a modification of the well-known linear programming technique is considered. 

We also consider multistage (WIR) designs of compaction filters. A new, efficient design method called the 

window method is then introduced. The method generates M-channel FIR compaction filters for any given 

power spectrum. Although it is suboptimal, no optimization tools of any kind are involved and the algorithm 

terminates in a finite number of elementary steps. As the filter order increases, the window method produces 

compaction gains that are very close to the optimal ones. We give a necessary condition for a compaction filter 

to be optimum and provide some bounds on the maximum compaction gains. Finally we propose an analyical 

method for the two-channel case which finds the optimum FIR compaction filters for a class of random processes. 
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/. INTRODUCTION 

Energy compaction filters have attracted a great deal of attention due in part, to the fact that they are 

the building blocks of optimal orthonormal (paraunitary) filter banks [1, 2, 3, 4]. This connection is made for 

the case where the filters are allowed to be ideal. More recently a number of authors have considered the FIR 

energy compaction problem for the two-channel case [1, 5, 6, 7, 8, 9, 10] and for the M-channel case [11]. 

The FIR compaction filters have applications in many areas including data compression, signal analysis, signal 

modeling, and data transmission [1, 3, 12]. An M-channel FIR compaction filter can be considered as one of 

M filters of a maximally decimated M-channel FIR orthonormal filter bank. Hence, one can view the problem 

as compaction of most of the signal energy into one channel of an orthonormal filter bank. 

In this paper we consider some new design techniques for optimum FIR compaction filters. We give analytical 

solutions in the two-channel case for a class of random processes. Some properties of optimum FIR compaction 

filters and corresponding gains are also considered. Detailed outline is provided in Sec. 1.4. 

1.1. Notations and Terminology 

1. Bold faced upper and lower case letters represent matrices and vectors respectively. 

2. X(z) and X(e?u) stand for z-transform, and Fourier transform, respectively of a sequence x(n). The 

notation X(z) denotes the ^-transform of x'(-n) where * stands for complex conjugation. If x(n) is real, 

then X(z) = X{z~l). Notice that X(z) = X*(l/z*), and the Fourier transform of x*(-n) is X'{e>u). 

3. The symbols I M and t M denote M-fold decimation and expansion as defined in [13]. The notation 

X(Z)\IM denotes the z-transform of the decimated sequence x(Mn). 

4. Nyquist(M) property. A sequence x(n) is said to be Nyquist(M) if x{Mn) = 6(n) or equivalent^ 

X(Z)\IM = 1- This can be rewritten in the form [13]: 

M-l 
£ X(zWk) = M (!) 
*=o 

where W = e~^lM. In an M-channel orthonormal filter bank {Hk(z)}, each |ff*(e^)|2 is Nyquist(M). 

So the integer M is often referred to as the number of channels. 

5. The notation xL(n) stands for a periodic sequence with periodicity L. If there is a reference to a finite 

sequence x(n) as well, then it is to be understood that xL(n) is the periodical expansion of x(n) with 

period L, i.e., xL(n) = ES-oo x(n + U^ The Fourier series coefficients of xL(n) is denoted by XL(k). 

6. For L a multiple of M, a periodic sequence xL(n) is said to be Nyquist(M) if 

CO 

xL(Mn) = SK(n)=  £ S(n + Ki) (2) 



where K = L/M. The equivalent form of this property in terms of the Fourier series coefficients XL{k) is 

M-l 

Y4XL{k + iK)=M,    k = 0,...,K-l (3) 
t=0 

(see Lemma 2 in Sec. III). 

7. Positive definite sequences. Let a sequence {x(n),n = 0,.... AT} be given and let P be the Hermitian 

Toeplitz matrix whose first row is [x(fi) x{l) ... x(N)], The sequence {x(n),n = 0,...,N} is called 

positive (negative) definite or semidefmite if P is positive (negative) definite or semidefmite respectively. 

Let [a(0) a(l) ... a(N)]T denote the corresponding eigenvector. Then the filter A[z) = £n=0 a{n)z~n 

will be called a maximal eigenfilter of P. If we consider the minimum eigenvalue instead, we will call 

the corresponding filter a minimal eigenfilter of P. 

1.2. The FIR energy compaction problem 

A filter H(z) of order TV will be called a valid compaction filter for the pair (M, Ar) if the product G(z) = 

H(z)H(z) is Nyquist(M). We will refer to G{z) as the product filter corresponding to H{z). Conversely, 

G(z) is the product filter of a valid compaction filter for the pair (M,N) if it is of symmetric order N, that is 

G(z) = Yln=-N 9(n)z~n and ifc satisfies the following conditions: 

g(Mn) = 6(n)    and   G(eju) > 0. (4) 

Now consider Fig. 1 where H(z) is an FIR filter of order N applied to an input x(n) which is a zero-mean 

WSS random process with the power spectral density S„(e*u). The output of the filter is decimated by M to 

produce y{n). The optimum FIR energy compaction problem is to find a valid compaction filter H(z) for the 

pair (M, N) such that the variance o\ of y(n) is maximized. Since decimation of a WSS process does not alter 

its variance, we have 

J —7T 

We will consistently use the notation G(eju) = ^(e^)!2. We define the compaction gain as 

Gcomp(M, N) = -| = j^s^* (6) 

where CT
2
 is the variance of x(n). The aim therefore is to maximize the compaction gain. 

Special cases. There are two extreme cases worth examining: the case where N < M and the case where ideal 

filters are allowed. In the first case, the condition g{Mn) = 6(n) is the same as #(0) = 1. This is equivalent 

to saying that H(e*") has unit energy. Hence, by Rayleigh's principle [14], the best filter is the maximal 

eigenfilter of the Hermitian Toeplitz matrix P whose first row is [r(0) r(l) ... r(N)] where r(n) = r*(-n) 

is the autocorrelation sequence of x(n). The corresponding compaction gain is the maximum eigenvalue of 

P and will be called the KLT gain.  The second case has been studied in [4] where the author describes a 



constructive solution that involves comparison of a set of values of the power spectral density at each frequency 

u and assignment of certain values to H(eju) accordingly. 

In the FIR energy compaction problem, we do not have the flexibility of assigning values to tf (e>w) inde- 

pendently for each u. This is because ff(e*") is determined by its JV + 1 frequency samples. For N > M, 

the problem is not an eigenfilter problem either, as the condition g{Mn) = S(n) implies more than the simple 

unit-energy condition. In Sec. Ill we will introduce a suboptimal method called the window method for design 

of such filters. Interestingly enough, this design method involves two stages that can be associated with the 

above two extreme cases. While the method is not optimal, it produces compaction gains very close to the 

optimum ones especially for high filter orders. 

1.3. Previous work 

The major motivation for studying compaction filters is their connection to optimal subband coding problem 

which has been widely studied [1, 2, 4, 15, 16, 17, 18]. When the ideal filters are allowed, the optimization of a 

maximally decimated M-channel orthonormal filter bank for a given input statistics has been solved [2, 3, 4], 

and the biorthogonal case is addressed in [18]. Optimization of FIR orthonormal filter banks is analytically more 

difficult, and some numerical methods have been developed for the two-channel case [1, 5, 9, 10] and for the 

M-channel case [11]. Lattice parametrization is utilized in [1] and the parameters are iteratively optimized. An 

optimum M-channel FIR compaction filter is designed by linear programming in [11] and then an orthonormal 

filter bank is constructed in some, optimal sense using the remaining degrees of freedom. The FIR energy 

compaction problem has been considered by several authors. There are different approaches to the problem 

summarized below. 

1. Eigenfilter method. In [19], the authors design one filter of an M-channel orthonormal filter bank 

using the so-called eigenfilter method. The objective in their design is to have a good frequency response. 

However, one can modify the technique to incorporate the input statistics. This can be done by using the 

psd Sxs(e*") as a weighting function in the optimization. The paper also discusses how to design a good 

orthonormal filter bank using the remaining degrees of freedom. In [11] the authors show how to use this 

idea for the statistical optimization of orthonormal filter banks. 

2. Linear programming. If one considers the problem of finding the product filter G(z) corresponding to 

the optimum compaction filter H(z), then it can be formulated as a linear programming problem. This 

has been done recently by Moulin [9, 11]. For a brief description of the formulation, the reader is referred 

to Sec. 2.1. The compaction filter H(z) is obtained from G{z) by spectral factorization. 

3. Quadratic constrained optimization method. If one formulates the FIR energy compaction problem 

in terms of the compaction filter impulse response h(n), rather than the product filter g{n), then it 

becomes a quadratic constrained optimization problem with a quadratic objective.  In this method no 



spectral factorization is involved. This method has been applied for the two-channel case by Caglar 

et al. [5]. The general M -channel case has been considered in a completely different context in the 

communications literature by Chevillat and Ungerboeck [12] where an explicit algorithm flow-chart is 

provided. In [20], a filter with good frequency response is designed using a similar approach. This is a 

valid compaction filter according to our definition (Sec. 1.2), and the extension to the optimal compaction 

filter design is straightforward. 

4. Analytical methods. Aas et al. [21] worked on a closely related problem for the two-channel case even 

though they have not explicitly considered the energy compaction problem. These authors have optimized 

a real-coefficient FIR filter H(z) such that H(z)H(z"1) is Nyquist(2) (that is, it is a valid real-coefficient 

compaction filter), and 
fr/2 W, , 

is maximum. The elegance of the method in [21] lies in the fact that no iterative numerical optimization is 

involved. Based on the fundamentals of Gaussian quadrature, the authors were able to obtain an analytical 

method to identify the unit-circle zeros of H(z) which uniquely determine it. In our paper, this method will 

be referred to as analytical method. In Sec. V we present extensions of the analytical method. While 

the original method primarily addresses conventional lowpass filter design, we will show how to adapt the 

idea for the case of FIR compaction filter design for a given power spectrum. Interestingly enough, we 

shall show that the analytical method is related to the well-known line-spectral theory in signal processing 

society [22]. We also mention here the work of Usevitch and Orchard [8] where an analytical expression 

for the compaction gain is presented for N = 3 and M = 2. 

1.4. Summary of the new results and outline of the paper 

1. Modification of linear programming method. In Sec. 2.2 we give a simple procedure to ensure that 

linear programming solutions guarantee the nonnegativity requirement on G(e?u). Since linear program- 

ming normally guarantees the nonnegativity only at a selected number of frequencies, it is important to 

make a modification to be able to obtain a solution so that G(ejw) > 0, Vw. 

2. Multistage (IFIR) extensions. In Sec. 2.3 we present the so-called IFIR extension of the linear pro- 

gramming technique to design FIR compaction filters in two stages. That is, the filter H(z) is represented 

in the form H0(z)Hi(zM°) where M0 is a factor of M and the much smaller filters H0{z) and Hx{z) are 

optimized. While theoretically suboptimal, the system H0{z)Hy{zM°) offers a much higher filter order for 

a fixed number of coefficients. This makes the design as well as implementation very efficient, similar to 

the case of IFIR filters in filter design practice [13, 23]. In Sec. 2.4 we consider a slight variation of the 

configuration where the Nyquist(M) property is theoretically assured and any compaction filter design 

technique can be used to design individual filters. The multistage method is also motivated by the fact 



that in the case of ideal niters (i.e., when there is no order constraint), this approach does not result in a 

loss of compaction gain as proved in [24]. 

3. Window method. A new and efficient design technique is introduced in Sec. Ill, called the window 

method for the design of FIR compaction filters. For a given input power spectrum, this method yields a 

suboptimal solution which is very close to the optimal solution especially for large filter orders. The window 

method has the advantage that no optimization tools or iterative numerical techniques are necessary. The 

solution is generated in a finite number of elementary steps, the crucial step being a simple comparison 

operation on a finite frequency grid. Combined with the fact that the solution is close to optimal, the 

method offers an attractive alternative to linear programming. In fact, we will show in Sec. 3.2 that there 

is a connection between the two methods. 

4. Properties of optimum FIR compaction filters and gains. In Sec. IV we examine some properties 

of optimum FIR compaction filters and corresponding maximum compaction gains. For example, we give 

a necessary condition for a compaction filter to be optimum for a given power spectrum. It is shown that 

an optimum FIR compaction filter continues to be optimum if the power spectrum is modified in certain 

ways. The behaviour of the optimum compaction gain, denoted by Gopt(M, N), as a function of M and N 

for a given power spectrum is investigated. We give some useful lower and upper bounds on Gopt(M, N). 

5. Analytical method. We consider the FIR energy compaction problem analytically for the two-channel 

case (Sec. V). This is possible for a certain class of random processes only. It can be regarded as a 

generalization of the technique in [21]. For the algorithm to be applicable, a certain sequence derived 

from the odd autocorrelation sequence has to be a positive or negative definite sequence. We characterize 

classes of random processes for which this is the case and therefore the method is applicable. As examples, 

we give analytical solutions for MA(1) and AR(1) processes. 

1.5. Connection between energy compaction filters and optimum orthonormal filter banks 

For the two-channel orthonormal subband coder shown in Fig. 2, the coding gain expression takes the form [4] 

G = v- °* (8) 

where the second line follows from the condition 2o* = o*0 + < imposed by orthonormality. Here v2
Xi is 

the variance at the output of Hi(z). Maximizing the coding gain is therefore equivalent to maximizing (or 

minimizing) <^0 
under the Nyquist(2) constraint 

= 1. (9) H0(z)H0(z) 
4.2 

Notice that the above argument holds even if H0(z) is constrained to be a finite order (IIR or FIR) transfer 

function. In the M-channel case, the coding gain is still the AM/GM ratio of subband variances, but it cannot 



be expressed in terms of a single subband variance a*,. It can however be shown that if the filter orders are 

unconstrained, then the analysis filters are optimal compaction filters for appropriate power spectra derived 

from the input [4]. For the finite order case and arbitrary M, optimal compaction filters are still of interest 

beacuse of the large coding gain obtainable from them. 

//. LINEAR PROGRAMMING METHOD AND IFIR DESIGNS 

The use of linear programming method in compaction filter design was proposed in [9], and is reviewed in 

Sec. 2.1. The technique yields a solution G(e>a) that is Nyquist(M) and is nonnegative on a certain discrete 

grid of specified frequencies. Note that after finding G(z), one needs to spectrally factorize it to find the 

compaction filter H(z). This step will succeed only if G(e^) > 0, Vw. In Sec. 2.2, we propose a simple 

procedure to guarantee the nonnegativity of the resulting solution for all frequencies. We then give extensions 

of the technique for the case of multistage (IFIR) compaction filters in Sec. 2.3. We will also consider a special 

IFIR configuration in Sec. 2.4 which has certain advantages. 

2.1. Review of the linear programming method 

Assume that the input process x(n) is real. The output variance can be written as 

N 

<72=r(0) + 2 5>(n)r(n) (10) 
n=l 

Let gd and rd be the vectors formed by the nonzero components of g{n) and r(n) fovn = l,...N. That is, 

gd = b(l) 5(2) ...g(M-l)g(M + l) ... g(N)f,    vd = [r(l) r(2) ... r(M - 1) r(M +1) ... r(N)}T (11) 

Then (10) can be written as o\ = r(0) + 2rjgd. This incorporates the Nyquist(M) condition but not the 

nonnegativity constraint in (4). Let cd(u) = [cos(w) cos(2w) ... cos((M-l)w) cos((M + l)w) ... cos(Nu)]T. 

Then G(ejtJ) = 1 + 2cJ(w)gj. Hence the problem is equivalent to the following: 

maximize rjgd    subject to   cj(w)gd >-0.5, Vw € [0,TT] (12) 

This type of problem is typically classified as semiinfinite linear programming [9]. By discretizing the frequency, 

one reduces this to a well known standard linear programming problem. This discretization however needs to 

be done with care. The resulting G(eju) can go negative in between the discrete frequencies. To avoid this, one 

can put some tolerance in the inequality (12). Our experience however was that even with a high tolerance, 

the resulting G(z) had single (rather than double) unit-circle zeros and G(e*") was not nonnegative. One way 

to overcome the difficulty is to numerically determine the zeros of G(e*") and to merge the pairs of zeros that 

are very close to the unit-circle into double unit-circle zeros. This requires determining the roots of G(z) that 

are in the vicinity of the unit-circle. This can be done by looking at the Fourier transform G{e>u) using a 

large number of frequency points. Yet another way is to "lift" G(e*") by increasing g(0) relative to the other 



coefficients (since g(0) has to be 1, in effect we scale g(n) for n ^ 0 by a constant that is slightly less than 1). 

In the next section we propose a third technique to overcome the difficulty without having to locate any zeros 

or the minimum of G{e}U). 

2.2. Windowing of the linear programming solution 

Consider the periodical expansion gL(n) of the linear programming solution where L is the number of 

discrete uniform frequencies {wk} used in the design process. Assume that L > 2N. Linear programming 

assures that G(e*") is nonnegative at the frequencies {wk}. Hence the Fourier series coefficients GL{k) oi gL(n) 

are nonnegative. Now if we consider the product 

w(n)gL(n) (13) 

where w(n) is a symmetric window of order K<L-N (length 2K + 1), the resulting Fourier transform 

is nonnegative provided w(n) has nonnegative Fourier transform W(e>"). This is depicted in Fig. 3. The 

reason follows from the fact that the Fourier transform of w(n)gL(n) is a weighted sum of shifted versions of 

W(e^) with nonnegative weights. For maximum compaction gain, the symmetric order of w(n) is chosen to 

be maximum, namely K = L-N-1. Note that when L = 2N, we have gL(N) = 2g(N). One can use a fixed 

window like a triangular window as depicted in the figure and get a satisfactory compaction gain. However 

one can always optimize the window. The optimization of the window given the periodic sequence gL(n) is 

discussed in Sec. Ill where we show that the optimum w(n) is the product filter of the maximal eigenfilter of 

the K x K Hermitian Toeplitz matrix formed by the product r(n)gL(n). Since the symmetric window order K 

is very high in linear programming designs, we suggest to use a triangular window rather than optimizing the 

window. The performance loss is negligibly small. 

Example 1. Let the input be psd be as in Fig. 4 and let N = 65 and M = 2. In the same figure, we plot the 

magnitude square \H(e^)\2 of the compaction filter H{z) designed by the linear programming method. The 

number of frequencies used in the design process was L = 512. We have used triangular window of symmetric 

order K = L - N - 1 = 446 and found that the resulting compaction gain is Gcomp(2,65) = 1.8698. If we 

optimize the window the compaction gain becomes 1.8744. One can verify that the compaction gain of the ideal 

(infinite order) compaction filter is 1.8754. 

2.3. IFIR designs using linear programming 

In the design of narrowband FIR lowpass filters for conventional applications, it is possible to decompose the 

transfer function H(z) into the form H(z) = ffo(*)ffi(*Wo), where H°& ™d H^ have s^1^11^ smaller 

lengths than H(z). While H(z) is theoretically suboptimal compared to, e.g., an equiripple solution, it has 

the advantage of actually requiring fewer active multiplier elements (because of the zero-valued coefficients in 

Hl(zMo)). This technique, called the IFIR technique [23] has also been extended to bandpass and multiband 

filters in the past, and is in fact related to multistage design of interpolation filters [25].  The method offers 



significant economy both in terms of design time and implementation complexity. For the case of compaction 

filter design, a similar decomposition proves to be valuable as we shall now demonstrate. 

Assume M = M0ML Consider Fig. 5(a) where H0(z) and H,{z) are such that the equivalent filter in 

Fig. 5(b) H(z) = H0(z)H1(zM°) is a valid compaction filter for the pair (M,N). The problem is to optimize 

the pair of filters H0(z) and Hi(z) for maximum compaction gain. If we fix one of the filters, it will be shown 

that the design of the other can be formulated as a linear programming problem. We will describe the details 

of how to find Hx{z) for a fixed H0(z) and vice versa, in an iterative manner. 

Let Go(z) = HotfHoiz-1), d(z) = H^H^z-1), and G(z) = H{z)H{z~l) with impulse responses 

ffo(n), ffi(n), and g(n) respectively. Denote the orders of H0(z), Hi(z), and H(z) by N0, Nlt and N respectively. 

Note that N = M0Ni + N0. Define 

go = fo>(0) flb(l) ■ • • 9o(N0))
T,    gi = MO) giO) ■ ■ ■ 5i(Ari)]T>    B = b(°) 90) ■ • ■ mf- (14) 

Optimization of ffx(z) for a given tf0(z): We have G{z) = G0(z)G1(z
M<>). Let G0 be the (27V+l)x(2M0iV1 + 

1) convolution matrix formed by g0(n). Taking into account the symmetries and the fact that Gi(zM°) has 

nonzero components only for multiples of M0, we can write g = A0gi, where A0 is an (TV + 1) x (Nx + 1) 

matrix that is obtained from G0. Now, the Nyquist(M) constraint requires that if we decimate g by M 

we should get e0 = [1 0 ... 0]T. Let B0 denote the matrix that is obtained by taking every Mth row 

of A0. Then we should have B0gi = e0. To force the nonnegativity constraint on Gi(e*"), let c0(w) = 

[1 2cos(w) 2cos(2w) .,. 2cos(N1u)]T. Then the constraint Gi(e*") > 0 becomes c2"(o;)gi > 0, Vw £ [0,TT]. If 

r = [r(0) 2r(l) ... 2r(N)f, the objective is to maximize rTg = rTA0gi. Hence we have reduced the problem 

to the following: 

maximize   rggi,    subject to    B0gi = e0,    and   cj(w)gi > 0, Vu; G [0,TT] (15) 

where r0 = A^r. Hence a standard linear programming algorithm can be applied once a set of freqencies is 

chosen for the inequality constraint. 

Optimization of H0(z) for a given ifi(z): Similarly, one can reduce the problem of finding the best H0(z) 

for a given Hi(z) to the following linear programming problem: 

maximize   rfg0,    subject to   Bigo = e0,    and   cf (w)g0 > 0, Vw G [0,TT] (16) 

where n = Afr, Cl (w) = [1 2 cos(a;) 2 cos(2o;) ... 2 cos(N0u))T. The (N + l)x (N0 +1) matrix Ai is obtained 

from the (2N + 1) x (27V0 + 1) convolution matrix formed by gi{n) by taking the symmetries into account and 

the matrix Bi is obtained by taking every Mth row of Ai. 

One can iterate between the above two optimization steps until there is no significant change in the com- 

paction gain. The initial choice of g0(n) can significantly affect the resulting compaction gain. According to our 

design experience if g0(n) is chosen to be a triangular sequence, the compaction gain at the end of the iteration is 



very good. The filters g0(n) and ffl(n) which result from the iteration should spectrally be factorized to identify 

H0(z) and H^z). This step will be successful only if the solutions are such that G0(e*") > 0 and Gi(e*") > 0 

for all u. If this is not the case, we can force it by use of windowing on g0(n) and 9l (n) as described in Sec. 2.2. 

If this is done then the product filter G0(z)G1(z
M<>) will not be exactly Nyquist(M). In the next subsection we 

show how to overcome this problem. 

Example 2. Let us design IFIR compaction filters for the pair (M,N) = (36,65), and for the input process 

whose psd is given in Fig. 4. Let M0 = 9 and M1 = 4, and let N0 = 11 so that N, = 6. The number of frequencies 

used in the designs is L = 1024. Starting with a triangular sequence for g0{n), the algorithm converges in a 

few steps. We windowed the resulting solutions g0(n) and 9l(n) with triangular windows of symmetric orders 

L - No -1 and L - Nx -1 respectively. The final product filter was not exacly Nyquist(M) because it was found 

that 0(36) a -0.0018 ? 0. The final compaction gain was 5.1444. If we design a compaction filter of order 18 

directly (i.e., not using IFIR technique), the compaction gain is 4.4225. This corresponds to a compaction filter 

with the same number of active multipliers, namely 19. If we design a compaction filter of order 65 directly (66 

active multipliers), then the resulting compaction gain is 7.2337. 

2.4. A Particular IFIR configuration 

In Fig. 5, if G0(z) is Nyquist(Mo) and Gi(z) is Nyquist(M1), it can be verified that G(z) given by 

Go(z)G1(z
M°) is Nyquist(M). Now, let us fix H0(z) to be a valid compaction filter for the pair (JV0>M0). 

Referring to Fig. 6(a), the best Hh(z) is the optimum compaction filter for (A^MO, and for the input x„(n) 

which has the psd $.„,„(*) = (CoMS,.«)^- Similarly, if *(*) is a fixed compaction filter for the pair 

(N1,M1), then we can redraw the configuration as in Fig. 6(b) and therefore the best H0(z) is the optimum 

compaction filter for (N0,M0), and for the input ^(n) which has the psd SXlXl(z) = Gi{zM°)Sxx{z). One can 

design the compaction filters H0{z) and H^z) iteratively using any of the known techniques. Hence, one can 

use the linear programming technique as well as any other technique like the window method to be introduced 

in Sec. III. Also note that if the ideal filters are allowed, this multistage configuration has no loss of generality 

as shown in [24]. 

Example 3. Let the setup be the same as in Example 2. We have designed the compaction filters H0(z) 

and ffi(z) iteratively using the standard linear programming procedure as in Example 1. We have started 

with friz) = 1. The first compaction filter H0(z) is therefore the optimal compaction filter for the pair 

(Mo, No) = (9,11) for the original autocorrelation sequence. We have windowed the final product filters as 

we did in Example 1 to guarantee the nonnegativity. The resulting overall compaction gain is 4.9432. This is 

slightly smaller than the overall compaction gain 5.1444 in Example 1. However, the resulting overall filter here 

is exactly Nyquist(M) unlike the case of Example 2. 

///. WINDOW METHOD 



In this section we will describe a new method to design compaction filters for general M. The input process 

might be real or complex and its psd may have any shape. The technique is quite simple while the resulting 

compaction gains are very close to the optimum ones especially for relatively high filter orders. 

3.1. Derivation of the window method 

The idea behind the method is to represent the impulse response of the product filter G{z) in the form 

g(n) = w(n)fL(n), (17) 

where w(n) and fL(n) are conjugate symmetric (i.e., w(n) = w'(-n), fL(n) = fl(-n)), and w(0) = fL(0) = 1 

(see Fig. 7). The window w{n) has the same length as g(n), namely 2N + 1 and the sequence fL(n) is periodic 

with period L = KM > 2N for some K. Evidently, only one period of fL(n) matters in (17). Define the Fourier 

series coefficients of /L(") as 

FL(k) = J2fL(n)Wk
L
n,   WL=e-^'L (18) 

n=0 

This is periodic with the same period L (the first period {FL{k), k = 0,..., L - 1} being just the DFT of the 

sequence {/L("), n = 0,..., L - 1}). We have the following observation: 

Lemma 1.  Consider the representation (17) for g(n) where w(n) and fL(n) are as explained above. If the 

Fourier transform W(eju) of w(n) is nonnegative for all w, if the Fourier series coefficients FL(k) of fL(n) are 

nonnegative for all k, and if fL(n) is Nyquist(M) then G(z) is product filter of a valid compaction filter for the 

pair (M,N). That is, g(Mn) = S(n) and G(e*") > 0. 

Proof. It is readily verified that G(e*") = i Efc=o FL(k)W(e^-^% Since FL(k) > 0 and W(e*") > 0, it 

follows that G(eju) > 0. If fL(n) is Nyquist(M) then so is g{n) because L>2N. ■ 

The choice of L will be discussed later. Assume the conditions of the lemma hold so that G(z) is product filter 

of a valid compaction filter. If w{n) is fixed, what is the best fL{n) that maximizes the compaction gain? To 

answer the question we first note the following: 

Lemma 2. A periodic sequence fL(n) with period L = KM is Nyquist(M), that is, fL{Mn) = 6K(n), if and 

only if its Fourier series coefficients FL(k) satisfy the following: 

M-l 
Y/FL(k + iK) = M,    k = 0,...,K-l (19) 
t=0 

A proof of this can be found in Appendix A. 

To obtain the best fL(n) let us write the objective (5) in terms of w(n) and /z,("): 

N N 

ol=   Y,  9(n)r*(n)=   £  «i(»)/i(n)r'(n) (20) 
n=-JV n=-AT 

Let f(n) = w*(n)r(n) and let SL(k) be the Fourier series coefficients of its periodic expansion fL(n).   For 

simplicity assume that L>2N. Then the objective can be written as 

al = 2 /x.(n)fl(n) = \f. F^)SL{k) (21) 
L 

n=0 k=0 
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Notice that both FL{k) and SL(k) are real.   Now to incorporate the Nyquist(M) constraint we write the 

preceding as K.ltf., 

iVV FL(k + iK)SL(k + iK) (22) 
Jfc=0   1=0 

For a fixed *, let SL(k + i*K) be the maximum of the set {SL{k + iK), i = 0,..., M - 1}. Then by (19), and 

noting that FL(k) > 0, the objective (22) is maximized if we assign 

FL(k + i0K) = M, and   FL(k + i,K) = 0, 1 = 1,...,M-l. (23) 

The procedure is illustrated in Fig. 8. By repeating the process for each k = 0,..., K - 1, the Fourier series 

coefficients of the best fL(n) is determined. The sequence fL(n) can now be calculated by the inverse relation: 

/LW^E^W (24) 

*=o 

Summary of the window algorithm 

Assume a window w{n) of the same symmetric order as g(n) with nonnegative Fourier transform has been 

chosen. Let L = KM > 2N. Then the algorithm steps are 

1. Calculate SL(k), the DFT coefficients of fL{n),n = 0,...,L - 1, where fL(n) is the periodical expansion 

of f(n) =w*(n)r(n). 

2. For each k = 0,...,K-1, determine the index to for which SL(k + i0K) is maximum, and assign 

FL(k + i0K) = M and FL(k +UK) = 0, 1 = 1,..., M-l. 

3. Calculate fL(n) by the inverse relation (24). We need only to determine fL(n) for n = 1,..., N. 

4. Form the product filter impulse response g(n) = w(n)fL(n) and spectrally factorize G(z) to find the 

compaction filter H(z). 

Real case. Before proceeding to a design example, consider the case of real inputs. In this case, the above 

algorithm can be modified to produce real-coefficient compaction filters. Let us consider the set of values 

{SL(k + iK),i = 0,...,M-l} (25) 

for each k = 0,...,K-l. Since SL(k) = SL(L- k) if the process is real, the above set is equivalent to 

{§L(L-k-iK) = SL(K-k + K(M-l-i)),i = 0,...,M-l} (26) 

Hence in the comparison, we need to consider only k = 0,.. -, P where P = f if K is even, and P = ^ if 

it is odd. Let SL{k + i0K) be the maximum of the set (25) for each k = 0,..., P. Because of the symmetry 

requirement, we need to be careful in the assignments. There are two cases to consider: 

1. The index L-k- i0K is among the set {k + iK, i = 0,...,M- 1}, 
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2. It is not. 

The first case happens if and only if 2k mod K = 0. This happens if k = 0 or k = f. We assign FL(k + i0K) = 

FL(L _ k _ ioK) = f if k + i0K?%, and FL(k + i0K) = M if k + i0K = f In the second case, we assign 

FL(k + ioK) = FL(L -k- i0K) = MHk + ioK^0 and FL{k + i0K) = M if k + i0K = 0. In either case, we 

set the remaining values in the set {FL(k + iM)} to zeros. This will maximize the objective (22), and fL(n) 

calculated by the inverse relation (24) is the best sequence and it is real. 

Summary of the window algorithm for the real case 

Assume a real symmetric window to(n) of order N, with nonnegative Fourier transform is given. Let 

L = KM > 2N as before. Let P be as explained above. Then the algorithm for the real processes has the 

following steps: 

1. Calculate SL(k), the DFT coefficients of fL(n),n = 0,..., L - 1, where fL(n) is the periodical expansion 

of f(n) = w(n)r(n). 

2. For each k = 0,...,P, determine the index i0 for which SL(k + i0K) is maximum, 

3. If k + i0K = 0 or k 4- i0K = \ then set FL{k + i0K) = M, else if * = 0 or k = f, then set F(k + t0Ä") = 

F(L-k-ioK) = 4f, else, set F(k + i0K) = F(L-k-i0K) = M. Set all the remaining values to zeros. 

4. Calculate fL(n) by the inverse relation (24). We need only to determine fL(n) for n = 1,... ,N. 

5. Form the product filter g(n) = w{n)fL(n) and spectrally factorize G(z) to find the compaction filter H(z). 

Optimization of the window. The algorithm produces very good compaction gains especially when the filter 

order is high as we shall demonstrate shortly. However, one can get better compaction gains by optimizing the 

window w(n). Consider the representation (17) again and let w(n) and fL(n) satisfy the conditions of Lemma 

1. If we fix fUn), what is the best window w(n)? The objective (5) can be.written as 

o\ = f SM(e*We*")|j (27) 

where W{eßu) is the Fourier transform of w(n) and Sxx(e^) is the Fourier transform of /*(n)r(n) where 

f(n) is one period of fL{n) centered at n = 0. Let W(e*u) = |A(e*")|2, where A(z) = E^=oa(n)z_" is 

the spectral factor of W(e*w). The only constraint on A(e^) is that it has to have unit energy in view of 

W(Q) - J* \A(eiw)\2$% = 1- Hence, by Rayleigh's principle [14], (27) is maximized if A[z) is the maximal 

eigenfilter of P. The corresponding compaction gain is the maximum eigenvalue of P. 

We have described how to optimize w(n) given fL{n), and vice versa. It is reasonable to expect that one can 

iterate and obtain better compaction gains at each stage. We have observed that two stages of iterations were 

sufficient to get near-optimal compaction gains. We started with a triangular window and found that fL(n) did 

not change after the reoptimization of the window. Notice that, the use of an initial window is not necessary if 
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one is willing to use a window after finding fL(n). However, in most of the design examples we considered, we 

have observed that using an initial window with nonnegative Fourier transform (in particular, the triangular 

window) and then reoptimizing the window resulted in better compaction gains. 

Example 4: MA(1) process. Let N = 5, M = 4, r(0) = 1, r(l) = p, and r(n) = 0, n > 1. Assume the 

process is real so that r(-n) = r(n). Let the window be triangular, i.e., 

W(n) = \0, el 
= 0, ±1, ...,±5 (28) 

elsewhere. 

The Fourier transform of f(n) = w(n)r(n) is S(e*") = 1 + fpcosu. Hence, the DFT coefficients SL(k) of f(n) 

in step 1 are 

&(*) = l + !pcoÄ,    k = 0,...,L-l. (29) 

Now, assume L = 12 > 10, so that K = 3 and P = 1. So we have the following sets to consider in step 2: 

&(0)MQMG)M9)},    {5L(1),5L(4),5L(7),5L(10)} (30) 

which are evaluated below respectively: 

5 5 5\/3    ,     5    ,     5\/3 5 , ,,.<. 
{1 + 1*1,1-3*1}.    {l + -6-*l-6P.l--6-/,'1+6p}- (3) 

First assume p > 0. The maximum of the first set is SL(0) and the maximum of the second set is SL(1). Hence 

applying step 3 of the algorithm we have 

{FL(k), fc = 0,...,L-l} = {4,4,0,0,0,0,0,0,0,0,0,4} (32) 

By the inverse relation (24) we calculate in step 4: 

,      f    l + v/32  1nl-v/3-1 m\ 
{/£(n),n = 0,...,iV} = {l>—^-,3,3,0,—3—} (33) 

Hence the product filter g(n) = w(n)fL(n) has been found, and 

The corresponding compaction gain is 1 + 5-^-p * 1 + 1.5178p. An optimum compaction filter H(z) is 

obtained by spectrally factoring G(z). Next consider the case p < 0. Let fL(n) be the corresponding solution 

with the Fourier series coefficients FL{k). Referring to (31), SL(6) in the first set and SL(7) in the second set 

is maximum. Hence, 

{FL(k), fc = 0,...,L-l} = {0,0,0,0,0,4,4,4,0,0,0,0} (35) 

which is equal to FL(k - 6) where FL(k) is the previous solution. Hence fL(n) = (-l)nh(n) and therefore 

G(z) = G(-z), with the corresponding compaction gain 1 - ^^p. An optimal compaction filter is H{-z), 

where H(z) is a solution for the previous case. 
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For comparison, we have also designed an optimum compaction filter using the linear programming technique. 

The corresponding compaction gain is approximately 1 + 1.6657|p|. This is achieved by using L = 512 and a 

triangular window of symmetric order L - N - 1. The compaction gain of the window method is only slightly 

lower. Let us find the improvement we can get by optimizing the window when we fix fL(n). The compaction 

gain is the maximum eigenvalue of the 6 x 6 symmetric Toeplitz matrix with the first row [1 /L(l) p 0 0 0 0]. 

This eigenvalue is 1 + 1.8019/L(l)|p|. Using fL(l) given in (33), the improved compaction gain is 1 + 1.6410|p| 

which is very close to the linear programming compaction gain 1 + 1.6657|p|. 

Can we improve the compaction gain further given this optimal window by reoptimizing fL{n)l In this and 

all the other design examples we considered, we used the triangular window and then found the optimum fL(n), 

and then reoptimized w(n) for fL(n). Interestingly enough, the reoptimization of fL(n) did not change it! 

Choice of the periodicity L 

Increasing L does not necessarily increase the resulting compaction gain. For example using L = oo which 

corresponds to using optimum ideal filter fL(n) for the autocorrelation sequence fL(n) does not result in the 

best achievable compaction gain using the algorithm. This is true even if no initial window w(n) is used. For 

the above example, we increased L to 16 and found that the compaction gain decreased! When we used the 

ideal filter for fL{n) which corresponds to L = oo, the compaction gain was better than that of the case L = 16 

but worse than that of the case L = 12. 

The best period L. Until this point we assumed that L > 2N. With this choice fL(p) is the periodical 

expansion of f(n) with no aliasing (see Fig. 9(a)). The first period of fL(n) is 

{^(n), n = 0,...,L-l} = {f(0),f(l),...,f(iV),0,...,0,f*(iV),...,r*(l)}. (36) 

However, for the algorithm to successfully find a valid compaction filter, it is only necessary to use a period L 

which is a multiple of M and is greater than N. This will ensure that fL(n) will be Nyquist(M). The smallest 

such period is M\N/M]. This choice however leads to an additional symmetry in fL(n) and according to our 

experience, the corresponding compaction gains are not good. If we use a period L that is the smallest multiple 

of M such that L > 2N, then we obtain very good compaction gains. This choice can be compactly written as 

L = M\2N/M] (37) 

If L = 2N, the sequence f/,(") has the following first period: 

{H{n), n = 0,...,L-l} = {f(0),r(l),...,r(JV) + r(iV))...,f*(l)}. (38) 

This is illustrated in Fig. 9(b) for a real process. In this case, we have fL{N) = 2f(N). This will always be the 

case if M = 2, since L = 27V is a multiple of M. 

3.2. Connection between the linear programming and window methods 
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In both the linear programming and window methods, we use windows to assure the nonnegativity of 

G(e*"). Consider the equations (13) and (17). When L is a multiple of M, a periodic sequence gL(n) in the 

linear programming method, and a periodic sequence fL(n) in the window method are found such that they 

are Nyquist(M) and their Fourier series coefficients are all nonnegative. For L > 2N, two problems are not the 

same because gL(n) is necessarily zero for some n, while fL(n) can be nonzero for all n (except n = kM, of 

course). If however L = 2N, then the two problems are exactly the same! If windowing is done in the same way 

in both methods, then we see that the resulting compaction gains should be the same. Hence, one can view the 

window method as an efficient and noniterative technique to solve a linear programming problem when L = 2N. 

If L is inreased, we saw that the window method does not necessarily yield better gains whereas this is the case 

for the linear programming method provided the window order is increased as well. However, optimization of 

the window becomes costly as the order increases. If one uses a fixed triangular window (with a high order) in 

the linear programming, and if the windows are optimized in the window method, then window method is very 

close and sometimes superior to the linear programming method as we demonstrate in the following example. 

Example 5: Comparison of linear programming and window methods. Let the input power spectrum 

be as in Fig. 4. In Fig. 10(a) we plot for a fixed number of channels of M = 2, the compaction gains of both 

the linear programming and the window method versus the filter order. The number of frequencies used in 

the linear programming method is L = 512 while the periodicity used in the window method is L = 2N. The 

windows used in the linear programming are triangular windows with symmetric order L-N-1. In the window 

method, the autocorrelation sequence is first windowed by a triangular window of symmetric order N to find 

/x,(n) and then the window is reoptimized. 

From the figure we observe that if the order is high, one has slightly better compaction gains using the window 

method. This implies that, if one optimizes the window, there is no need to use large number of frequencies in 

the linear programming method! More importantly, there is no need to use the linear programming technique for 

high filter orders. However, it should be emphasized that if the windows are optimized in the linear programming 

method, one can get slightly better compaction gains than the window method. In Fig. 10(b), we show the plots 

of the compaction gains of the two methods for various values of M for a fixed filter order of 65. We observe that 

the window method performs very close to the linear programming method especially for low values of M. We 

show the upper bounds on compaction gains in both plots. The upper bound in the first plot is achieved by an 

ideal compaction filter and that in the second plot is achieved by a maximal eigenfilter as discussed in Sec. 1.2. 

IV. PROPERTIES OF FIR COMPACTION FILTERS AND BOUNDS ON COMPACTION GAINS 

In this section we will give a number of results pertaining to the properties of optimum FIR compaction 

filters and the corresponding compaction gains for a given filter order N and the number of channels M. 

1. A necessary condition on the compaction filter for optimally. For an FIR compaction filter H(z) 
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to be optimum it is necessary that the Fourier transform of the sequence r(n)g*(n) attains a maximum at the 

frequency w = 0, where g{n) is the impulse response of the product filter of H(z). To see this, consider the 

Fourier transform of the product r(n)g*(n) at a frequency u>0: 

$>(n)jr(n)e-**n = f_   SXZ^
U)G{^~U^ (39) 

n 

But the LHS is the output variance of a valid compaction filter whose product filter is g(n)e^n. Since gin) is 

optimum for the given autocorrelation sequence r(n), it follows that the above RHS attains a maximum when 

wo = 0. If the process is real, then by considering g{n) = g(n) cos wQn one can arrive at the same result with 

real coefficient filters. 

2. Class of random processes that have the same optimum compaction filters for a pair (M,N). 

Let us consider the objective in the time domain: 

a2
y=r(0)+  Y,  r(n)g'(n) (40) 

n^kM 

From this, one can deduce that an optimal compaction filter does not depend on r[kM) and it continues to be 

optimal for a modified autocorrelation sequence of the form f (n) = c r(n), n ± kM, where c> 0. We will see 

later (Sec. V) that in the two-channel case, if c < 0, then H(-z) is the optimum solution for f(n). 

3. Monotonie behaviour of the optimum FIR compaction gain. Let Gopt(M,N) denote the optimum 

compaction gain for a given number of channels M and FIR filter order N. It is then clear that 

Gopt(kM,N)<Gopt((k + l)M,N),k = 1,2,...,    and   Gopt(M,N) < Gopt(M,N + 1). (41) 

4. Bounds in terms of eigenvalues. Let fL(n) be any Nyquist(M) with nonnegative Fourier series coeffi- 

cients. Assume L> N. Then, 

.   \maX{r(n)rL(n)}N
o<GoAM,N)<Xmax{r(n)}N

o. (42) 

Here the notation \maz{r(n)}N stands for the maximum eigenvalue of the Hermitian Toeplitz matrix whose 

first row is [r(0) r(l) ... r{N)]. The inequality on the left follows because the product filter g(n) = w(n)fL(n) 

achieves that bound by choosing w(n) as the product filter of the maximal eigenfilter of the Hermitian Toeplitz 

matrix formed by the sequence r(n)/£(n). For the inequality on the right, note that there exists an integer 

k > 1 such that kM > N. From Sec. 1.2 we have Gopt{kM, N) = Amoi|r(n) jQ which is called the KLT gain. 

f       \N 

From (41), it follows that Gopt{M,N) < Gopt(kM,N) = Amai|r(n)]o . 

If we replace fL(n) by a positive definite Nyquist(M) sequence f(n) of order N, the inequality on the left 

continues to be valid because w{n)f(n) is still a product filter of a valid compaction filter. To see this, note 

that the sequence f(n) can be extended to an infinite sequence (e.g., using autoregressive extrapolation) such 

that its Fourier transform is nonnegative. Hence the product w(n)f(n) has nonnegative Fourier transform. The 

Nyquist(M) property of the product follows from that of /(n). 
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5. Upper bound by M. For all FIR compaction filters we have 

Gopt(M,N)<M (43) 

with strict inequality as long as Sxx(e^) is not a line-spectral process. To see this, first observe that G(e^) < M. 

Hence, a\ = /^ G{e^)Sxx{e^)^ < M/I, S«(e*")& = ^- The e<luality holds if and onlyif G{?""> = M 

for all u for which SM(e*") # 0. If SM(e*") is not line-spectral, this requires G(e>w) to be identically zero 

for some region of frequency which is impossible since the order is assumed to be finite. For M = 2, we 

will derive another upper bound for Gopt(2,N) in Sec. 5.1 (see (53)). This bound will be applicable under 

certain conditions on the input power spectrum, to be made more explicit in that section. Under some further 

conditions that we will describe, the stated bound can in fact be achieved. 

V. ANALYTICAL METHOD 

In this section we consider the special case of two channels (M = 2) and assume that the input x(n) is real 

so that the compaction filter coefficients h{n) can be assumed to be real. For this two-channel case we will show 

that the optimal product filter G(e*") can sometimes be obtained using an analytical method instead of going 

through a numerical optimization procedure. We will also present a number of examples which demonstrate 

that the method is applicable to a large class of input power spectra. Also presented are examples where the 

analytical method can be shown to fail. 

The analytical method is motivated by the fact that, under some conditions to be explained, the objective 

function (5), which can be written as a\ = £rG(e>")SM(e*'')& can be conveniently expressed as a finite 

summation. The summation involves a modified polyhase component of G(e*") at a discrete set of frequencies 

wfc determined by the psd 5IS(c*w). This will allow us to optimize the modified polyhase component, and hence 

G(z), essentially by inspection. 

The inspiration for our work in this section comes from the recent contribution by Aas et al. [21] where 

the Gaussian quadrature technique is cleverly used to adress the problem of optimizing the frequency responses 

of filters. Our work in this section differs in a number of respects. First we do not use Gaussian quadrature, 

but take advantage of an elegant representation for positive definite sequences which results from the theory 

of line-spectral processes. Second, we take into account the knowledge of the input psd in the optimization 

process. Finally we present several design examples demonstrating the usefulness as well as the limitations of 

the proposed method. 

Suppose the product filter G(z) = EL-N 9{n)z~n is expressed in the traditional polyphase form [13] 

G(z) _ E0(Z
2
) + z^Eiiz2). For the real coefficient case we have g(n) = g{-n), and it follows that the 

coefficients of the FIR filter Ei(z) have the symmetry demonstrated in Fig. 11. This implies, in particular, that 

Ei{z) = 0 for z = -1. By factoring the zero at z = -1 we can write Ei{z) = (1 + z)Gi(z) where Gx{z) is FIR 
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and has symmetric real coefficients. We therefore obtain the modified polyphase representation 

G(z) = l + (z + z-1)Gl(z
2),    i.e.,   G(e*') = l + 2cosWGi(e'2w) (44) 

where we have also used the Nyquist(2) property of G(z). Since Nyquist condition and nonnegativity of G(e>«) 

together imply 0 < G(e*") < 2, we have the following bound on the modified polyphase component Gi(e^): 

 - <Gi(e*")<- 7—üZ>    -*<"<* (45) 
2cos(u;/2) ~    U     ; " 2cos(w/2)' 

Notice that G(z) and Gx{z) can be determined from each other uniquely. We shall express the output variance 

a2 in terms of Gi(e*") so that we can see how to optimize the coefficients of d{z). For this, write the input 

psd in the traditional polyphase form as Sxx(z) = S0(z
2) + z^Stf). Then a\ can be simplified into the form 

a\ = r(0) + /*]r.Gi(eiw)**(e,'w)^ where *x(z) = (1 + z_1)Si(z) or equivalently 

*x(en = cos(u/2)(sxx(e^) - Sxx(e^~^)) (46) 

Using Parseval's relation the objective can be written as 

(N-l)/2 

(j2=r(0)+       Y,       9i(n)Mn) (47) 
n=-(N-l)/2 

where ^(n) is the inverse transform of *s(z) which is produced below explicitly for convenience. 

^(0)=2r(l), Vx(l)=r(l)+r(3), ..., M^1) = r(N - 2) +r(N). (48) 

Note that Vx(n) = ^*(-n). Our aim is to maximize the second term in the expression (47) for fixed ^x{n) 

(i.e., fixed input) by choosing 9l(n) under the constraint (45) and the usual filter-order constraint. Under the 

assumption that the input-dependent sequence rpx{n) is positive or negative definite (see Sec. 1.1 for definition) 

we will show how this can be done analytically. (The significance of this assumption on rßt(ji) is explained in 

Sec. 5.3). We will need the following representation theorem for positive definite sequences: 

Theorem: Representation of positive definite sequences. Given a positive definite sequence of m + 1 

complex numbers (0(n), n = 0,..., m}, there exists a representation of the form 

m 

«Kn) = £>*e^n,    n = 0, ,m (49) 

*=o 

where ajt's are all positive and uk's are all distinct. 

Proof. Let P be the (m +1) x (m +1) Hermitian Toeplitz matrix whose first row is $T = [<t>(0) 4>0) ■ ■ ■ 4>M1- 

Consider the extension of P into a singular (m + 2) x (m 4- 2) Hermitian Toeplitz matrix P such that its 

(m + 1) x (m + 1) principal submatrix is P. This extension is merely augmenting an extra element 4>{m + 1) 

to the end of $ and forming the corresponding Hermitian Toeplitz matrix. The number 4>{m + 1) is chosen to 

make P singular. This can always be done because of the following reason: for the matrix P, one can run the 

well-known Levinson recursion procedure [26] to obtain the optimal mth order predictor polynomial Am(z). If 
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one now considers the following continuation of the recursion Pc(z) = Am(z) + cz-^m+1^Am(z) with \c\ = 1, 

then this corresponds to the singular predictor polynomial of a random process with singular autocorrelation 

matrix P. The result now follows from a well established fact [26, 27] that states that a WSS process is line 

spectral with exactly m + 1 lines if and only if its (m +1) x (m + 1) autocorrelation matrix is nonsingular and 

(m + 2) x (m + 2) autocorrelation matrix is singular. ■ 

Remarks. It is clear that Pc{z) is also the minimal eigenfilter of P. The zeros of Pc(z) are all on the unit circle 

and distinct. Let {e*"*, k = 0,..., m} be these zeros. The distinct frequencies {wk, k = 0,...,m} are referred 

to as the line-spectral frequencies. The representation (49) is not unique because of the nonuniqueness of the 

unit magnitude constant c in the proof. 

Real case. The predictor polynomial Am(z) and the constant c are real. Hence we have two cases: c = ±1. 

The case c = 1 leads to a symmetric singular predictor polynomial Pi(z), while the case c = -1 leads to 

an antisymmetric polynomial P-x(z). It is a well-known fact that the distinct unit-circle zeros of these two 

polynomials are interleaved [22]. For simplicity assume that m is odd. Then P_i(z) has both of the zeros z = 1 

and z = _! and Pl(z) has none 0f them. Using Pi(z), we have the following representation for a real positive 

definite sequence <j>(n): 
(m-l)/2 

<t>(n)=    ^2   ßkcosu)kn,    n = 0,...,m (50) 
Jfc=0 

where ßk's are all positive and w*'s are all distinct and different from 0 and TT. 

5.1. Derivation of the analytical method 

Assume for simplicity (N -1)/2 is odd and let {^(n), n = 0,..., (N - l)/2} be positive definite. Applying 

the real form of the representation we have 

(AT-3)/4 N 

ij}x{n)=    ^2    ßkcoswkn,    n = 0,. (51) 

Jfe=0 

The objective (47) can therefore be written as 

(JV-3)/4 (N-l)/2 (N-3)/4 

a;=r(0)+    £   ßk       £      ffl(n)cosa;fcn = r(0)+    £   AG^e*"*) (52) 
Jfc=0 n=-(JV-l)/2 *=° 

From (45), the output variance (52) is maximized if G^e?»*) = 2cos(Lfc/2), k = 0,...,(N- 3)/4. This implies 

G(e^/2) = 2, and by Nyquist(2) property G{e^-»*M) =0, k = 0,...,(N-3)/4. Notice that these zeros 

are all located in the region (w/2,n). Since 0 < G(e*") < 2, the derivatives of G(fß") should vanish at the 

above frequencies. Hence we should have GV'<"fc/2) = 0, k = 0,...,(N - 3)/4. In view of (44), this in turn 

implies Gi(eJa,fc) = 4t$(u%)> k = 0,...,(N - 3)/4. The total number of constraints on Gi(eju) and Gi(eJW) 

is Nil, Since d(z) = E^I^D/aSi(")*"" ^th ffi(n) = 9i(-n), it is determined uniquely. If these &f± 

constraints are satisfied, the solution G(e^) so found is necessarily nonnegative in the frequency region [vr/2, ir] 

(Appendix B). If it is nonnegative in the region [0,TT/2) as well, then it is the optimum compaction filter with 
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the corresponding compaction gain 

W     ..     
=0 2cos(ut/2) 

v-(N-3)/4  &. 

~p(0) ^(^ = 1 + £±4?M (53) 

If however, G(e*") turns out to be negative at some frequency in [0,7r/2), then it is not a valid solution and the 

above RHS is only an upper-bound for Gopt(2,N). 

Uniqueness of the solution. Assume that G(e*u) obtained by the method is nonnegative. Then it is 

the unique solution! To see this, assume there is another optimal product filter K(z). Assume Kx{z) is its 

modified polyphase component. Then, there exists a frequency uk among the line-spectral frequencies such 

that Ki(eiUk) < 2cos{Uk/2)- Hence the summation (52) for Ki(e*") is necessarily less than that for Gi(e?u), 

resulting in contradiction. Notice that it is the product filter G(z) that is unique, not the compaction filter H(z). 

However, if the zeros of H(z) are constrained to be on and inside the unit-circle, then H{z) is unique as well. 

5.2. Construction of optimal G{z) 

Consider the following factorization of G(z): 

G{z) = G0{z)Gl{z) (54) 

where G0(z) contains the unit-circle zeros determined by the above procedure. Hence we have 

N-3 

Go(z) = II (^ + 2cos(ufc/2) + z"1)2 (55) 
fc=0 

Using the Nyquist(2) property, it is possible to determine Gi(z) and hence G(z). Let g0(n) and &(n) be 

the impulse responses of G0(z) and Gi(z) respectively. The product (54) in z-domain is equivalent to the 

convolution in time domain. Using the convolution matrix and taking into account the symmetries we get 

g=Ag! (56) 

where the vectors g, gi have the components gn = g{2n),'gm = gx{n), n = 0,..., (N-l)/2, and A is obtained 

from the impulse response g0(n). Prom the Nyquist(2) property, it is clear that g = [1 0 ... 0]T. Hence &(n) is 

determined by inverting the above equation. The invertibility of the matrix A follows from the fact that Gx(z) 

is uniquely defined and hence G{z) is uniquely defined. Therefore a unique solution to gi must exist, implying 

that A is nonsingular. 

Efficient determination of G0(z): We will show that we can obtain G0(z) from the singular predictor 

polynomial Pi(z) without having to find its roots. For this, let us write Pi(z) explicitly: 

N-3 N-3 

P^z) = cz-^ f[(z- e*"*)(* - e~j"k) = cz"^ J[ (z - 2coso;* + z"1) (57) 

Now, consider the upsampled polynomial Pi(z2). This can be written in the form Px{z2) = P0(z)P0(-z), where 
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Po(z) is a polynomial in z"1 of order ^ with all its zeros in the left half plane. To be explicit: 

JV-3 

Po(z)=*-*** n <*+2cos(^/2)+*-1) (58) 

k=0 

Hence we can write G0(z) = z^P0
2(^)- Therefore, given the singular predictor polynomial Pi(z), one can 

apply a continuous-time spectral factorization algorithm [28] to Pi(z2) to obtain P0(z) and therefore G0(z). 

Since G(z) can be determined from G0(z) as we explained before, we observe that there is no need to find the 

roots of Pi (2)! 

Spectral factorization. To find the compaction filter H(z), we need to spectrally factorize G{z). It is clear 

that we can write H{z) as 

H(z) = H0{z)Hr{z) (59) 

where H0(z) and Hi(z) are the spectral factors of G0(z) and 61 (z) respectively. We can deduce ff0(*) immedi- 

ately: HQ(z) = P0(z). Hence all we need to do is to determine Hi(z) which is of order £=i. This can be done 

by a discrete-time spectral factorization of Gi (2) [29]. 

The case where Ef± is even can be treated in a very similar manner.  In this case, we use the singular 

polynomial P_i(z) corresponding to c = -1 and one of the line-spectral frequencies is 0, that is, z = 1 is a root 

of P_i(z). The resulting product filter GO*") continues to be nonnegative in [TT/2,4 We skip the details and 

give the summary of the algorithm for both cases. 

Summary of the analytical method 

Given the autocorrelation sequence r(n), n = 0,...,N, where N is odd, we would like to find an optimum 

compaction filter H(z) of order N. We first obtain the sequence ^(n), n = 0,..., (N -1)/2 using the relations 

(48). If this sequence is positive definite, then we do the following 

1. Calculate Ar^ (z), the optimum predictor polynomial of order £fi, corresponding to the positive definite 
2 

sequence ipx(n) and obtain Pc(z) from 

Pc(z) = AJK=IC0 + cz-^ As^iz'1) (60) 

where c = 1 if ^f1 is odd, and c = -1 otherwise. 

2. Obtain the spectral factor, P0(z) of Pc(z
2) using a continuous time spectral factorization algorithm and 

determine G0(z) = z 2  P<?{*)■ 

3. Calculate Gi(z) using (56) and find its spectral factor Hi(z). 

4. The optimum compaction filter is H{z) = P0(z)Hi(z). 

Case where ipx(n) is negative definite.  From our developments for the positive definite case, and using 

the sequence -ipx(n), it can be proven that the optimum compaction filter is H(z) = H(-z) where H(z) is 
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p-, 2 1+'* 

the optimum compaction filter for the positive definite sequence &(n) = -^(n).   However, it is easier to 

see this directly by looking at the objective in time domain (40).  First note that xj>x(n) corresponds to the 

autocorrelation sequence r(n) = -r(n), n ± 0.   Let g(n) and g(n) be the product filter impulse responses 

for H(z) and H(z) respectively.  The objective is then to maximize ££=i -g(n)f{n), This has the solution 

-g(n) = g(n), n # 0. Hence we have G{z) = G(-z) and therefore H{z) = H(-z). 

Remark. The observation made above clearly extends to the case where f(n) = c r(n), c < 0, as scaling does 

not change the optimal solution as stated in Sec. IV. 

Example 6:   AR(1) process.   Let N = 3, and r(n) = pn where 0 < p < 1.   Then, Vx(0) = 2p and 

■0x(l) = Pi1 + P2)- The Hermitian Toeplitz matrix corresponding to {ipx(n), n = 0,1} is 

(61) 
1 + p2        2    J 

which is positive definite.   Hence we can apply the above algorithm.   Running the Levinson recursion, we 

have:  A^z) = 1 - ^z"1 and using c = 1 we have: Pi(z) = 1 - (1 + p2)z~l + z~\  By straightforward 

calculation P0(z) = l + yßTfz'1 +z~2 from which it follows that G0(z) = (z + y/3 + p2+z~1)2 and GL(«) = 

i       (- _ 2A/3 + P
2
 + Z

_1
). For all values of p, Gi(z) does not have unit-circle zeros and therefore it is 

nonnegative. The spectral factor of Gi(z) turns out to be ^^^„(a+fe*-1) where a = V V3 + P2 + V2 + ^2 

and 6 = -\f\/f+t? - \/2 + p2. Finally we obtain 

H(z) = ftWff!(z) = ^(3+^2)3/4 (a + (b + aV^7)z~l +(a + 6^/3T7)z-2 + bz~3) (62) 

The product filter is G{z) = iI3T^(-z3+3(2+p2)z+2(3+p2)3/2+3(2+p2)z-1-z-3)J with the corresponding 

optimum compaction gain Gopt(2,3) = 1 + ^2j-. For comparison purposes we have also designed compaction 

filters using the linear programming and the window methods for several values of p. Table 1 shows the filter 

coefficients and compaction gains using the linear programming and the window methods together with those 

obtained by the above analytical method. 

Linear phase constraint is a loss of generality. Notice that the compaction filters obtained by the analytical 

method in Example 6 cannot have linear phase. This is observed by considering the zeros of G{z) which consist 

of a single reciprocal pair and two double unit-circle zeros. For H(z) to have a linear phase, the multiplicity 

of the zeros of the reciprocal pair should be two. Since the solution G(z) is unique, we conclude that the 

linear-phase constraint on the compaction filter H{z) is a loss of generality. 

Example 7: MA(1) process. Let N = 3, r(0) = 1, r(l) = p > 0, and r(n) = 0, n > 1. The sequence ^(n) 

is therefore tpx(0) = 2p, ipx(l) = p. The corresponding Hermitian Toeplitz matrix is 

P = p 
2    1 
1    2 

(63) 

which is positive definite.  Hence applying the algorithm, Ai(z) = 1 - \z l and therefore using c - 1, the 

singular predictor polynomial is Pi(z) = 1 - z"1 + z~2.   The continuous spectral factor PQ{z) of Pi(z2) is 
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P0(z) = 1 + 2cos(7r/6)z-1 + z~2 = 1 + v/Sz"1 + *"2 and therefore <?„(*) = (* + ^3 + z >)2. Hence Gx(z) is 

calculated to be G,{z) = -*?(z - 2v/3 + z"1). The spectral factor Hx{z) of d(z) is found to be 

ffi(z) = 3-3/42-1/2(^+^/2 _ y/yfi-yfiz-1) (64) 

Hence the compaction filter Jf (z) is 

3-3/42-1/2 UV3 + V2 + (y/z + y/6 - y/VS-^z-1 + (JV3 + V2 - ^3 - v/6)z~2 - VVs-v^z"3) 
V (65) 

The product filter is G(z) = -*f z3 + f z + 1 + fz"1 - *f z"3, and the corresponding optimum compaction 

gain is Gopt(2,3) = 1 + -^=p. 

Example 8: MA(1) process, general order N. We will analytically find the optimum compaction filters 

of arbitrary (odd) order N for MA(1) processes. Note from Sec. IV that, if we find H(z) corresponding to a 

MA(1) process with p > 0 then this is the solution for all MA(1) processes with p > 0 since the autocorrelation 

sequences are the scaled versions of each other in the sense explained in that section, from the arguments given 

for the case where V*(n) is negative definite, H(-z) is the solution for all MA(1) processes with p < 0. 

Now, following the steps of the algorithm we have 

Pc(z) = 1 - z-1 + z-2 - ... + (-l)-^z-^- (66) 

If £=1 is odd, then the zeros of Pl{z) are e**", wk = (2k-l)-^5, k = 1,...,(N+ l)/4. Therefore the roots 

of P0(z), hence the unit-circle zeros of the optimum compaction filter H(z) are 

■K , N + l (Rr?\ 
e^a-,    nk=n-(2k-l)w-^,    k = l,...,-T- (67) 

Similarly, if ^ is even, the roots of P_i(z) are 0, e±^, wk=2k^-3, k = 1,..., (N - l)/4. Therefore the 

roots of P0{z), hence the unit-circle zeros of the optimum compaction filter H{z) are 

■».e*0»,    ^ = ^-2*^,    * = 1,...,^ (68) 

The rest of the procedure involves spectral factorization and it is not easy to see what Hx{z) will be in closed 

form. However we note that the algorithm successfully finds the optimum compaction filter for any odd order 

N. Table 2 shows the compaction filters and the corresponding compaction gains for various filter orders. 

Example 9:   KLT. If N = 1, then we have AQ(Z) = L and P-^z) = l ~ Z~K   and therefore P°(z) = 

1 + z-1, Go(z) = z -I- 2 + z-\ and Gi(z) = |. Hence the optimum compaction filter of first order is H(z) = 

-Ml + z-1) if r(l) > 0 and it is H(z) = Ml-z~l) if r(l) < 0. Notice that these correspond to the two-channel 
^ ,. •    •   n    ro n _ i J.M1Ü 
KLT subband coder which is known to be fixed. The corresponding compaction gain is GoptV, l)-i+ r(0) ■ 

It should be noted that the above filters and the corresponding compaction gains are optimal for any power 

spectrum and for any number of channels. Hence we have: 

Gopt(M,l) = 1 + ^.    M>2 (69) 
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If r(m) is maximum of all r(n) where n is not a multiple of M, then one can achieve the compaction gain of 

! + kMl by using the filter ^(1 + z~m) if r(m) > 0 and the filter ^(1 - z~m) if r(m) < 0. 

Case where if,x(n) is semidefinite. Assume that ij)x(n) is positive semidefinite. Then there exists an integer 

P <(N - l)/2 such that {tpx{n), n = 0,1,...,P} is positive definite and {^«(n), n = 0,1,...,P + 1} is only 

positive semidefinite. Then we can replace {N - l)/2 in the above arguments with P and write the objective 

(52) in terms of P + 1 corresponding line-spectral frequencies. This enables us to determine a product filter of 

symmetric order 2P + KN. If this resulting filter is nonnegative, then we have found the unique minimum 

symmetric order product filter that is optimum among the filters of symmetric order less than or equal to N\ 

The case where ipx(n) is negative semidefinite is similar, the details are omitted. 

Example 10: Case where tpx(n) is positive semidefinite. Let JV = 3, r(0) = 1 and r(l) = r(3) = p > 0. 

Then, Vi(0) = ipxO) = 2P- The associated Toeplitz matrix is 

(70) 2p 
1    1 
1    1 

which is positive semidefinite and singular. The number P is 0 in this case and the objective (52) is l+2pGi(ej0). 

By letting Gi(eJ'°) = \, the product filter G(z) of symmetric order 1 can easily be seen to be \z + \ + \z~l, and it 

is readily verified that G(ejw) > 0. In fact this is the KLT solution with the compaction filter H(z) = ^(1+z-1). 

The corresponding optimum compaction gain is 1 + p. No 3rd order solution can achieve better gain than this. 

5.3. Characterization of processes for which the analytical method is applicable. 

For the technique of Sec. 5.1. to be applicable for a particular order N, we need to have the sequence ipx(n) 

to be positive or negative definite for that N. However, although the sequence rj>x(n) is positive or negative 

definite and the algorithm is applicable, it may happen that the resulting G(eju) is not nonnegative. This will 

be the case if Öi(e*"), obtained from nonnegative G0(e*"), is not nonnegative. In what follows we will describe 

a class of processes for which the sequence xl>t(n) is positive definite for all iV and therefore the analytical 

method is applicable for all orders N. 

The sequence xpx (n) is positive definite for all AT, if and only if Vx (ejw) is not a line-spectrum and ^ (e"") > 0. 

Using (46), this is true if and only if Sxx(eiu) is not a line-spectrum and 

(Sxx(en - Sxx(eJ(*-u))) > 0, « € [0,TT/2] (71) 

We will say that the process is 'low-pass' if its psd satifies the above condition. Notice that, in the ideal case, 

the optimum compaction filter for that type of process is the ideal half-band low-pass filter [13] (see Fig. 12(a)). 

For the case where ipx{n) is negative definite for all N, the preceding is replaced with 

(5M(eJ(u)) - S„{e?<*-4j) < 0, a; 6 [0, TT/2] (72) 

For this type of input process, the optimum ideal compaction filter is the ideal half-band high-pass filter [13]. 

Hence we will say that the process is 'high-pass' if its psd satisfies (72) (see Fig. 12(b)). 
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Cases where the algorithm fails. Assume that the process is such that the sequence {^x(n), n = 0,..., (N- 

l)/2} is positive definite and therefore the algorithm is applicable for the filter order N. Assume however that 

one of the line-spectral frequencies uk is close to n. The algorithm will require eH«-»-™ to be a zero of G(z). 

Hence G(e*") will have a zero close to TT/2. But this may be impossible if the order N is low. To see this, 

note that G(e^2) = 1 from the Nyquist(2) property and therefore requiring G(e*") to have a zero close to the 

frequency vr/2 is the same as requiring a narrow transition band for G(e*") which is impossible if the order is 

not sufficiently high. One can however, increase the filter order to overcome the problem. 

Example 11. Let AT = 3, and r(n) = coswm, wi G [0,TT/2). Hence V*(0) = 2coswi, <Ml) = cos3wi +coswi, 

and jfit(n) is positive definite.  Using the procedure of Sec.  5.2, we find G0{z) = (z + 2COSUJ! + z~1)2 from 

which it follows that Öi(z) = -T^ZrSz " 4c0SWl + z~^' This haS & unit-circle zer0 if Wl G (*/3'ff/2) 

and therefore Öi(e?a) is not nonnegative. Hence the algorithm fails if the impulse is within TT/6 neighborhood 

of 71-/2. We have designed optimum compaction filters for the above autocorrelation sequence using the linear 

programming method for various values of «i. We have observed that the optimum compaction filters agree 

with the above analytical solution if «i G (O.TT/3]. For the complementary case of wi G (n/3,ir/2) where the 

analytical method fails for N = 3, linear programming yields the solution G(z) = -\z% + 1 - \z~3, regardless 

of the exact value of Wl. The factors G0(z) and G^z) of G(z) are G0(z) = (z + 2COS(TT/3) + z"1)2, and 

r>, tT\ - i c0 _ 4cosC7r/3) + z_1). This is the same as the previous solution except that ui in the 
"IV*/ 16cos3(7r/3)v v   '    ' 

previous solution is replaced with a constant value equal to 7r/3. 

As another example, let us fix «i = 2TT/5 > TT/3, and find the optimal FIR compaction filter of order 5. The 

corresponding product filter is G{z) = \zh + 1 + |z"5 and the compaction gain is Gopt(2,5) = 2 which is the 

largest possible gain for M = 2! Since the process is line-spectral, this is not surprising. The important point 

here is that while the algorithm is not successful for the filter order 3, it is successful for a higher order 5. 

Example 12: Case where the process is multiband. Finally we will consider an example in which the 

input is not "low-pass" or "high-pass" but rather is of multiband nature. Let r(0) = l,r(l) = ^,r(2) = 0, and 

r(3) = _I. The sequence tpx(n) is positive definite for N = 3 so that the algorithm is applicable. There is 

more than one way to extrapolate this sequence and find the corresponding psd. For example, one can consider 

MA(3), AR(3), or line-spectra(4). In all three cases, we have verified that the psd is neither 'low-pass' nor 

'high-pass'. Rather it is of multi-band nature. Applying the algorithm steps we have G0(z) = (z + ^ + z-1)2 

from which it follows that 6i(z) = -V2(z - v/2 + z~l). This has a complex conjugate pair of unit-circle 

zeros! Hence Gx(e^) is not nonnegative and therefore G(e*u) = Öo(^w)Gi(c^) is not nonnegative either. The 

algorithm halts because Gi(eju) cannot be spectrally factorized. 

VI. CONCLUDING REMARKS 

In this paper we have developed some design techniques for optimal FIR compaction filters and elaborated 
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some of their properties. We have proposed a procedure to guarantee the nonnegativity of the linear program- 

ming solutions. Multistage (IFIR) designs are considered and some design examples are provided to demonstrate 

the usefulness. We have developed a new and efficient design method that we called the window method which 

does not involve any of the iterative optimization techniques such as linear programming. We have given its 

relation to the linear programming technique. Finally we have given an analytical method for the two-channel 

case that works for a broad class of random processes. In all the techniques we have concentrated on finding 

the product filter G{z) = H{z)H(z) of the compaction filter H(z). Hence the final stage of every algorithm is a 

spectral factorization to find the compaction filter H(z). However, we can first calculate the compaction gains 

for different filter orders using the product filter coefficients g(n). This enables one to decide what filter order 

to use. The bounds we gave on the maximum compaction gain are also useful for this purpose. 

APPENDIX A 

Fact Al.   Let xL{n) be a periodic sequence with period L = KM and consider the decimated sequence 

yK{n) = xL(Mn) which is periodic with period K.   Let XL(k) and YK{k) be the respective Fourier series 

coefficients. Then we have YK(k) = -fa X^Q
1
 XL(k + iK). 

Proof. The Fourier series coefficients of yK(n) is 

„=0 n=0        1=0 1=0 n=0 

,    M-lJf-1 i   K-l -I   M-l 

m    i=0   j=0 n=0 t=0 

In the last step we have used the fact that £ J2n=o W%n = 8K(m). ■ 

Proof of Lemma 2. The Fourier series coefficients of SK(n) are all 1. Hence from Fact Al, it follows that 

yK(n) = xL(Mn) = 6K(n) if and only if YK(k) = jiJ2^1 XL(k + iK) = 1. ■ 

APPENDIX B 

Proof of nonnegativity. We will show that G(e*") obtained by the procedure in Sec. V is necessarily non- 

negative in the region [TT/2,4 The Nyquist(2) property of G(e*") implies G'(e*") = G'{e^~^). We therefore 

have G'(eJ'""fe/2) = G'(ei(,r"w'/2)) = 0, k = 0,..., (N - 3)/4. Now, by the mean value theorem in calcu- 

lus, we also have G'(e^*/2) = G'ie^-0"^) = 0, k = 0,..., (N - 7)/4, for some uk € (w*. w*+i). Notice 

that since wjt's are all distinct and lie in the open region (0,TT), all of the above zeros are distinct. The total 

number of such zeros is therefore N - 1. Since G(e*") is a cosine polynomial of order N, G'(e»w) is a sine 

polynomial of order W and therefore it can be written in the form G'(eßu) = sinw T(cosw), where T(x) is a 

polynomial of order N - 1. Excluding the zeros at 0 and TT, the total number of zeros G'(e>u) can have in 

[0,TT] is N - 1. Hence G'(eju) cannot have any other zero on the unit-circle. If G(z) has a zero at TT - uk/2 

with multiplicity greater than 2, then, G'(e^) has at least double zero at that frequency implying that the 
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total number of its zeros is more than N - 1 which is a contradiction. If G(z) has a single zero in the region 

(TTATT) which is different from all wk% then, by applying the mean value theorem once more, G'(e*") has 

to have another zero which is again a contradiction. Hence we have proved that G{e>*>) has double zeros at 

TT-Uk/2, k = 0,...,(N- 3)/4, and that it does not have any other unit-circle zeros in [n/2,v]. This in partic- 

ular implies G(e*") > 0 for w € [7r/2,ir]. The proof for the case of even £=± is similar, the details are omitted. ■ 
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Lisf of Figures 

Figure 1: Pertaining to the FIR energy compaction problem. 

Figure 2: Two-channel orthonormal filter bank. The filter H0(z) determines all the other filters. 

Figure 3: Windowing of the linear programming solution. The window w(n) has nonnegative Fourier transform. 

For illustration purposes the window is chosen to be triangular. 

Figure 4: The psd of an AR(5) process, and the magnitude square of an optimal compaction filter for N = 65 

and M = 2, designed by linear programming. The parameter L is 1024 and a triangular window is used. 

Figure 5: IFIR compaction filter design, (a) Basic configuration, (b) Equivalent system. 

Figure 6: Special IFIR design configuration where H0(z) is a valid compaction filter for (M0, N0) and #i(z) 

is a valid compaction filter for (Mlf JVi). (a) H0(z) is fixed, Hx(z) is optimum compaction filter for x0(n), (b) 

Hi(z) is fixed, H0(z) is optimum compaction filter for n(n). 

Figure 7: Decomposition of g{n) as w(n)fL(n) where W(eju) > 0 and FL{k) > 0. 

Figure 8: The procedure to find FL(k): SL(0) is maximum among {SL(iK)}, hence FL(0) = M, FL(IK) = 

0,1 ^ 0. SL(l + K) is maximum among {SL(l + iK)}, hence FL(l + K) = M, FL(1 + IK) = 0,1 ? 1, and so on. 

Figure 9: Periodical expansion of f(n). (a) L > 2N, (b) L = 2N. 

Figure 10: Comparison of the window and linear programming methods. The input power spectrum is as 

shown in Fig. 4.   (a) Compaction gain versus filter order, M = 2, (b) Compaction gain versus number of 

channels, ./V = 65. 

Figure 11: Coefficients of the polyphase component E^z) of the product filter G(z). Because of the symmetry 

g(n) = g(-n), we have £i(-l) = 0. 

Figure 12: Illustration of low-pass and high-pass power spectra, (a) A low-pass power spectral density and 

the corresponding optimum ideal compaction filter response, (b) A high-pass power spectral density and the 

corresponding optimum ideal compaction filter response. 

List of Tables 

Table 1: Compaction filter coefficients h(n) and corresponding gains for AR(1) processes with various p values. 

The filter order is N = 3 and the number of channels is M = 2. 

Table 2: Compaction filter coefficients and corresponding gains for MA(1) processes. The number of channels 

is 2. 
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and M = 2, designed by linear programming. The parameter L is 1024 and a triangular window is used. 
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Figure 5: IFIR compaction filter design, (a) Basic configuration, (b) Equivalent system. 
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is a valid compaction filter for (Mi,Ni). (a) Ho(-z) is fixed, ffi(z) is optimum compaction filter for x0(n), (b) 
Hi(z) is fixed, i?0(z) is optimum compaction filter for xi(n). 
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Figure 12: Illustration of low-pass and high-pass power spectra, (a) A low-pass power spectral density and 
the corresponding optimum ideal compaction filter response, (b) A high-pass power spectral density and the 
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p = 0.1 

n •analytical method window method linear programming 

0 
1 
2 
3 

0.5494144350 
0.7789293967 
0.2470689810 

-0.1742690225 

0.6940928372 
0.7136056607 
0.0680132766 

-0.0661535225 

0.5839818982 
0.7658293099 
0.2140666953 

-0.1632362113 

compaction gain 1.1153 1.1078 1.1151 

p = 0.5 

compaction gain 

analytical method 
0.5308991349 
0.7963487023 
0.2411149862 

-0.1607433241 
1.5547 

window method 
0.6817974052 
0.7258587819 
0.0663296736 
-0.0623033026 

1.5283 

linear programming 
0.5693221037 
0.7821354608 
0.2047520302 

-0.1490404954 
1.5537 

p = 0.9 

n analytical method window method linear programming 

0 
1 
2 
3 

0.4938994371 
0.8279263239 
0.2281902949 

-0.1361269173 

0.6550553981 
0.7510864372 
0.0620169861 

-0.0540877314 

0.5605331011 
0.8017336546 
0.1699982390 

-0.1188544843 

compaction gain 1.9222 1.9118 1.9207 

Table 1: Compaction filter coefficients h(n) and corresponding gains for AR(1) processes with various p values. 
The filter order is N =3 and the number of channels is M = 2. 



n N = 3 N = 9 N = 15 N = 21 

0 0.5502267080 0.3472380509 0.2619442448 0.2135948251 

1 0.7781380728 0.7212669193 0.6444985282 0.5837095513 

2 0.2473212614 0.5313628729 0.6197371546 0.6522949264 

3 -0.1748825411 -0.0301418144 0.1178983343 0.2237822545 

4 -0.2357012104 -0.2498547909 -0.2185003959 

5 0.0008621669 -0.1127984531 -0.1849242462 

6 0.1250275869 0.1367316336 0.1009864921 

7 -0.0141611881 0.0800586128 0.1357184335 

8 -0.0608205190 -0.0879123348 -0.0574793351 

9 0.0292806975 -0.0512638394 -0.0996883819 

10 0.0616834351 0.0386787054 

11 0.0272577935 0.0732876341 

12 -0.0441106561 -0.0298852666 

13 -0.0065141401 -0.0529392251 

14 0.0275486991 0.0255464898 

15. -0.0111966480 0.0362662187 

16 -0.0230508869 

17 -0.0216340483 

18 0.0206081274 

19 0.0077883397 

20 -0.0156868986 

21 0.0057402527 

p = 0.1 1.1155 1.1244 1.1260 1.1266 

compaction gains p = 0.3 1.3464 1.3732 1.3781 1.3798 

p = 0.5 1.5774 1.6220 1.6301 1.6330 

Table 2: Compaction filter coefficients and corresponding gains for MA(1) processes. The number of channels 

is 2. 
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